DENMARK TECHNICAL COLLEGE
MASTER PLAN 2020
July 31, 2020

2020 CONCEPTUAL MASTER PLAN
Chairman:

Willie L. Todd, Jr. Ph.D, President

Committee Members:

A. Clifton Myles, Ph.D., Executive Vice-President
Tia Wright-Richards, M.A., Chief Academic Officer
Thomas W. Mayer, M.P.M., Associate Vice President for Institutional Advancement and Effectiveness
Clarence Bonnette, M.B.A., Chief Financial Officer
Stephen Mason, M. Ed., Associate Vice President for Workforce Development and Continuing Education
Avis Gathers, Vice President of Student Services
Travis Johnson, Director of Information Technology
Karmaine McClary, Inventory Control/Project Manager
TABLE OF CONTENTS

I. INTRODUCTION
- Review of Progress from 2009 Revision of Master Plan..........................5
- Scope of Planning Process...5
- Summary of Facility Needs...6

II. HISTORY
- Denmark Technical College Mission Statement..................................7

III. NATURAL ELEMENTS
- Soils..9
- Wetlands..11
- Hydrology and Flood Plains...12
- Vegetation..13

IV. MAN MADE ELEMENTS
- Proposed Changes to Man Made Facilities..15
- Existing Use Site Plan...18
- Existing Site Plan...19
- 2020 Master Plan Site Plan...20
- Denmark Entry Signage from Hwy 78...21
- New Gate House Welcome Center...22
- Conceptual Addition to Bldg #23 Thomas N, Road Dining Hall23
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conceptual Addition to Bldg #23 Thomas N, Road Dining Hall</td>
<td>24</td>
</tr>
<tr>
<td>Conceptual Addition to Bldg #23 Thomas N, Road Dining Hall</td>
<td>25</td>
</tr>
<tr>
<td>Conceptual Entry Renovation to Bldg. #100 William L. McDuffie Student Services Center</td>
<td>26</td>
</tr>
<tr>
<td>Conceptual Entry Renovation to Bldg. #100 William L. McDuffie Student Services Center</td>
<td>27</td>
</tr>
<tr>
<td>Conceptual Entry Renovation to Bldg. #100 William L. McDuffie Student Services Center</td>
<td>28</td>
</tr>
<tr>
<td>Conceptual Entry Renovation to Bldg. #100 William L. McDuffie Student Services Center</td>
<td>29</td>
</tr>
<tr>
<td>V. ACTION PLAN</td>
<td>30</td>
</tr>
<tr>
<td>Action Plan</td>
<td>31</td>
</tr>
<tr>
<td>II. SUMMARY OF PROBABLE CAPITAL IMPROVEMENT COST</td>
<td>32</td>
</tr>
</tbody>
</table>
Denmark Technical College has renewed its commitment to expand its current College facilities. This is an update to Denmark Technical College’s Master Plan prepared by LS3P Architects in 1990 along with Coast Architect’s Revisions in 2004 and 2009. This revised Master Plan will reflect the Colleges Ten Year Plan, from 2020 to 2030. This revision will reflect a realistic growth plan for the College. This document is intended to provide a flexible framework to guide growth.

Through the responsible implementation of this plan, long term growth can be planned for in an organized and conscientious manner; thus, eliminating planning which is short sighted and performed under crisis conditions.

A. REVIEW OF PROGRESS FROM 2009 REVISIONS OF THE MASTER PLAN:

- RENOVATION OF BUILDING #28, BIOLOGY & CHEMISTRY LABS
- REPAINTING OF THE EXISTING EXTERIOR OF THE BUILDINGS ON CAMPUS
- STUDY PERFORMED TO DETERMINE FUTURE RENOVATIONS FOR BUILDINGS #200 & #300.

B. SCOPE OF PLANNING PROCESS

This updated report reflects changes to the 1990 Master Plan and the 2004 & 2009 Revisions. It includes a physical master plan, Denmark’s Mission Statement, a capital improvement cost summary and a revised action plan. The College met and decided on a program for growth which was realistic and achievable. The outcome of this study is a series of recommendations which are verbally stated, as well as graphically illustrated in a conceptual master plan. Estimated costs were then developed reflecting the conceptual master plan and an action plan was prepared outlining prioritized recommendations.
C. SUMMARY OF FACILITY NEEDS

The needs of the Facility development and renovations have changed with the vision for Denmark Technical College. Enrollment has grown from 42 students in 1948 to 650 students in 2020. In many instances, buildings need to be renovated or upgraded to accommodate current programs. At the same time, new facilities are needed for expanded programs which require additional space. New Housing Facilities have been proposed to meet the College's needs.

The following is a brief overview of key facility needs addressed in this revised 2020 master plan:

1. Administration & Support Facilities: The renovation and new entry addition to Building #23, Thomas N. Road Dining Hall.

3. Residential: The College’s goals ultimately call for creation of on-campus housing for 700 students. This is an important goal for the college, as Denmark is the only Technical College in the state which provides on campus housing for it’s students. Presently approximately 342 students are housed on campus. New “apartment style” housing is proposed to provide housing for an additional 350 boarding students.

4. Multi-Purpose Facilities: Proposed renovation of existing entry to Building #100 William L. McDuffie Student Services Center.

4. Transportation and Parking: Additional parking facilities will be needed to meet campus parking requirements. Several new parking facilities have been proposed to meet current shortfalls, as well as future needs.

5. Utilities: Proposed improvements to utility infra-structure include developing a loop in the water distribution system to improve pressure, a future pump station for the sanitary sewer system and comprehensive storm water management plan. The loop in the water distribution system to improve pressure will need to be accomplished before any additional new buildings will be allowed to be constructed.

The facility needs summarized above have been addressed in detail in the following sections of this master plan. Together, they represent a realistic plan for Denmark Technical College's Strategic goals.
Denmark Technical College is situated on 53 acres located within the rural town limits of Denmark and Bamberg County, South Carolina. It originally opened its doors on March 1, 1948, and over the last 72 years, it has grown from a small Area Trade School to a fully accredited Technical Education College.

A. DENMARK TECHNICAL COLLEGE MISSION STATEMENT

Denmark Technical College is a public, comprehensive, Historically Black, two-year technical college located in rural Bamberg County. The College annually serves approximately 650 credit and continuing education students, a mix of traditional, nontraditional, full-time and part-time. Denmark Technical College is the only technical college in the State of South Carolina with on-campus housing. As a member of the South Carolina Technical College System, Denmark Technical College's mission is related to the educational mission of the State of South Carolina and the Technical College System. The College's primary service area is comprised of Bamberg, Barnwell, and Allendale Counties with a legislated mandate to serve students throughout the state. As an open-door institution, the College provides affordable, post-secondary education culminating in associate degrees, diplomas, or certificates, to citizens from diverse educational and socioeconomic backgrounds.

The mission of Denmark Technical College is fourfold:

1. To provide students the knowledge and skills necessary for employment and maintenance of employment as technical, semi-professional, and skilled workers in engineering and industrial technologies, business, computer technologies and public service;
2. To prepare students for transfer to senior institutions;
3. To provide graduates with competency in written and oral communication, computer literacy, information processing, mathematics, problem-solving, interpersonal skills necessary for life-long learning; and
4. To enhance the economic development and growth of the service area and the state.
Denmark Technical College pursues its mission within a student-centered environment based on the fundamental values of a commitment to excellence; fostering a positive learning process, well-balanced cultural and social experiences; in an atmosphere of mutual respect, an understanding of and the ability to function in a technologically advanced world; and with a realization of the need for a strong work ethic. The College seeks to fulfill its mission by offering the following programs using multiple instructional methods, including traditional lecture and lab and distance education through interactive video and satellite technology for both on-campus and off-campus instruction:

Senior College/University Transfer Program: Completion of courses directly equivalent to the first two years of traditional college study as offered at senior colleges and major universities which may be transferred to senior colleges.

Technical Education: Curriculums designed to provide the knowledge and skills needed for employment in industry, business, and government.

General Education: Courses to provide the common knowledge, skills, and attitudes needed by each individual to be effective as a worker, a consumer, and a participant in a democratic society.

Continuing Education: Credit and noncredit classes offered during the day, in the evening, and on Saturday to assist the adults in the region to continue their learning experiences.

Transitional Studies: A program to prepare individuals for admission to the technical and transfer curriculums at the College by helping individuals develop the basic skills necessary to succeed.

Specialized Training Programs: Training coordinated with South Carolina industries through the Center for Accelerated Technology Training and provided where specific job opportunities are available for new or expanding industries.

Region and Community Services: Specialized services to help meet the cultural and educational needs of the region including cultural events, workshops, meetings, lectures, conferences, seminars, and other special community projects.
III. NATURAL ELEMENTS

This section has not been revised from the 1990 Master Plan.

The following section, Natural Elements, includes information pertaining to soils, wetlands, hydrology, floodplains, and vegetation. Through the inventory and analysis of these existing physical elements, a vital link can be forged between the College’s goals and the practical capabilities of the site. The process includes two phases that are never completely separate in practice: the inventory phase and the analysis phase.

The inventory phase simply represents a documentation of elements as they exist on the site. The analysis phase considers the impacts of these elements on future site development.

Each of these natural elements has been addressed in graphic form on the two accompanying maps entitled Natural Elements: Inventory & Analysis of Soils, Wetlands & Hydrology, and Natural Elements: Inventory & Analysis of Vegetation. They are discussed in detail in the ensuing text.

In summary, surface soils in areas available for future development exhibit moderate and severe limitations for development. These soils can be modified for construction but will affect building costs. Wetlands appear to be prevalent in many areas available for future development. As wetlands cannot be cleared or filled without entering into a lengthy permitting process, proposed development in these areas has been avoided or minimized.

Generally surface water runoff is moving from surrounding properties onto and across campus and draining to the southeast. Future development has been located so that it does not adversely impact existing drainage patterns and consideration has been given to future storm water detention facilities.

The majority of the vegetation on existing campus property consists of open lawn areas with occasional shrub and tree plantings. There are two forested areas on campus, the most significant of which occurs at the southeast corner of the property. Most of the areas identified for future development are heavily forested. In areas of future development, care should be taken to maintain as much existing vegetation as possible.

A. SOILS

The Soil Survey of Bamberg County produced by the United States Department of Agriculture, Soil Conservation Service, was used to map and classify surface soils. The issue referenced for this project was published in 1966, however, draft versions of revised survey maps were used to refine soil boundaries. A final revised soil survey for Bamberg County will be available in the near future. It is recommended that data in the new publication be reviewed prior to development to insure the existing conditions do not differ from information indicated.

It is also important to note that the level of information provided in county soil surveys is general in nature and focuses on surface conditions. Prior to acquisition of property for future development, the College should obtain detailed soil borings information to determine the soil bearing capacity and develop ability of sites.
1. Inventory & Analysis

The soils found within the existing campus property and surrounding properties considered for future development are generally poorly drained loams on clay sub soils. There were eight soil types mapped and a representative from the Soil Conservation Service visited the site, taking samples to verify the data.

Soils were then classified into the three general categories of developmental constraint: slight, moderate and severe. The Soil Conservation Service defines these categories using characteristic information such as slopes, permeability, shrink-swell potential, depth to bedrock, and depth to water table.

The following general categories include the soils which have been identified on campus and surrounding properties:

a. **Slight Development Constraints:** The soils that occur in this category present no more than minor problems for the proposed uses. These soils give satisfactory performance with little or no modifications required for their use. Soils in this category include:

 65A- Norfolk Loamy Sand

b. **Moderate Development Constraints:** The soils that occur in this category do not represent exceptional risk or cost for the proposed uses, but the soil has undesirable properties or site features. Moderate limitations may require modification of the soil itself or special design techniques to achieve satisfactory performance of the facility. The needed measures usually increase the cost of establishing the use, but the added cost is generally not prohibitive. Design modifications, for example, include mucking and backfilling, installing storm water improvements to lower ground water, or applying compacted fill. Soils in this category include:

 32B- Emporia Loamy Sand 41A- Goldsboro
 61B- Neeses Loamy Sand 62B2- Neeses

c. **Severe Development Constraints:** The soils that occur in this category require additional cost or risk to adapt the soil to the proposed uses. The soil properties are so unfavorable that special design techniques cause increases in construction cost and if not properly implemented, may cause increased maintenance costs. A rating of severe does not necessarily imply that the soil cannot be adapted to the use, but that there will be cost associated with overcoming the limitation. Design modifications, for example, may include mucking and backfilling, installing storm water improvements to lower ground water, or applying compacted fill. Soils in this category include:

 24- Coxville Fine Sandy Loam 55- Lynchburg Loamy Sand 15- Byars
III. NATURAL ELEMENTS

The inventory information indicated the presence of hydric soils in a number of areas. Hydric soils often indicate the presence of wetlands. Hydric soils are technically defined as soils, which in undrained conditions, are saturated, flooded, or ponded long enough during the growing season to develop anaerobic conditions that favor the growth and regeneration of hydrophytic vegetation. Several areas within the hydric soil zones have been identified as probable wetlands. Refer to the following section on wetlands for further discussion.

A large percentage of the site contains moderately and severely limited soils. Development constraints can be overcome by engineering solutions, however, it should be emphasized that these solutions usually increase construction costs. Additionally, long term maintenance costs may occur in areas which exhibit poor soils and have not been properly improved or modified during the development process.

B. WETLANDS

The U.S. Army Corps of Engineers defines wetlands as: “Those areas that are inundated or saturated by surface or groundwater at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions."

To determine if wetlands were present, the following three factors were considered or evaluated: soils (hydric character), water dependent vegetation (hydrophytic vegetation) and the presence of water (hydrologic regime). This was accomplished through soil studies, site visits and through interpretation of color infrared aerial photography. This wetland inventory is approximate in nature and occurs on currently owned property, as well as property not owned by Denmark Technical College.

It is important to note that the exact boundaries of potential wetlands should be flagged in the field, surveyed and certified by the Corps of Engineers prior to the acquisition or development of properties potentially containing wetlands.

1. Inventory & Analysis

LS3P began the wetlands mapping process by conducting a site visit with a representative of the Soil Conservation Service. During this site visit, surface soil samples were taken in various locations. These samples confirmed the presence of hydric soils in several areas.

Newkirk Environmental Consultants were commissioned to determine if hydrophytic vegetation and a hydrologic regime were present. Both were confirmed through interpretation of color infrared aerial photography and on-site inspections. The approximate locations of wetlands were marked on the aerial photograph and transferred to the campus base map.

A large wetland area occurs directly north of the existing vocational facilities. This area serves as a natural storm water runoff filter, receiving runoff from the agricultural fields to the northwest. It is a densely forested pine stand with mixed hardwoods and cypress. This forested wetland could become a unique focal point for the future campus.

Two smaller forested wetland areas have been identified to the north and west of the existing campus.
III. NATURAL ELEMENTS

Two smaller forested wetland areas have been identified to the north and west of the existing campus.

A large wetland area has been identified to the north of the existing baseball field. This property was originally targeted by the College as a primary site for future growth. Following the identification of this potential wetland, future growth areas were shifted to the northwest and the southeast. Proposed development north of the baseball field has been extended north to the existing power easement. Approximately 1.4 acres of this proposed development would impact a wetland area, requiring approval from the U.S. Army Corps of Engineers.

Additional wetland areas have been identified to the south and east of the existing campus property. These areas are heavily forested with mixed hardwoods and pines. Proposed development has generally been avoided in these areas.

At the conclusion of the wetland inventory process, it became evident that property for potential future expansion was severely limited by the presence of wetlands. Denmark Technical College should immediately begin surveying, assessing and acquiring properties that have been identified or future growth. It is important for the College to secure areas for future expansion to prevent becoming land locked.

Development cannot take place in wetland areas without approval from the US Army Corps of Engineers. Any disturbance of wetlands, such as cutting of trees, placement of fill, ditching or road construction may involve extensive permitting, which can be a lengthy process.

C. HYDROLOGY AND FLOODPLAINS

This section of the master plan pertains to the disposition and flow of surface water, as well as the land's susceptibility to flooding. This information was obtained through the study of a campus topographic survey, USGS quadrangle maps, color infrared photography and Federal Emergency Management Agency (FEMA) flood zone maps. 1. Inventory & Analysis

The study area consists of one large drainage basin which is situated between two ridges; one to the east and one to the west. Storm water runoff flows from these ridges towards the existing campus. It then drains to the wooded picnic area to the southeast, which is the lowest area on the existing campus. From the wooded area, water is piped under Alumni Drive through two culverts to two open drainage ditches south of the campus and eventually flows into Lemon Creek.

Regional drainage patterns have been altered through the implementation of ditches. A portion of the runoff north of the campus has been directed to the east through a man-made drainage ditch. Surface runoff from this area is piped under College Road to a drainage ditch east of the campus.

Existing drainage patterns have been considered when locating buildings and other facilities. A development plan that reflects the existing drainage patterns is cost effective, as well as environmentally sensitive.
A high percentage of the campus environment will be covered by impervious surfaces. Runoff from the existing campus, as well as the future campus development, will be high in volume and rate. Runoff will also likely be low in quality, thus a potential source of pollution for downstream creeks. The potential for pollution and flooding can be minimized through the development of a storm water detention basin and through directing storm water flow through wetland areas. A detention basin will slow the storm water discharge and the wetlands will provide a filtering effect, cleansing the storm water.

A detention basin has been proposed for the new north campus area which would also function as a visual amenity.

A review of the FEMA flood maps has indicated that all properties inventoried fall within the C zone of the FEMA Flood Insurance Program. This means that they are designated as areas of minimal flooding (above the 500 year flood zone). The Town of Denmark is a participant in the FEMA Flood Insurance Program, however, Bamberg County is not. Therefore, developed areas outside the town limits which may be damaged by flooding are not eligible for FEMA assistance. The majority of the existing campus property occurs outside of the town limits.

D. VEGETATION

The mapping of on-campus vegetation was accomplished through a survey completed by Edisto Surveyors. The densely forested areas surrounding the existing campus were mapped through the use of color infrared aerial photography. These forested areas were then walked in the field to determine the types of vegetation present.

1. Inventory & Analysis

Vegetation on the existing campus, for the most part, consists of open lawn areas with occasional planted shade trees and shrub areas. The predominant shade tree used to date is willow oak. These willow oaks have adapted well to the climatic conditions and the moist clay soils found on the property. However, the volume of tree plantings on campus should be increased significantly. As new projects are developed, it is recommended that additional tree plantings be included.

There are two forested areas that occur within the campus property. The most significant of these is Palmetto Gardens which is located at the southeast corner of the campus and is presently used as a picnic site. It is a mixed pine and hardwood forest and has a very open understory. It is recommended that a portion of this area be preserved as a forested site for use by students in contrast to the more open, unshaded campus environment.

The second forested area on campus property occurs north of the vocational facilities and adjacent to the Smith tract. This area, as well as the Smith tract, contain predominantly hardwood forests with occasional pines. The understory in these areas is dense and consists of myrtle, bay and yaupon. Proposed development in these areas will significantly impact vegetation, however, efforts should be made to preserve trees within these developed areas.
Most of the areas identified for future development are heavily forested, with two exceptions: the LD. Hutto Estate to the northwest, which is currently being managed for the agricultural production of soybeans, and the Joseph H. Guess, Jr. tract to the northeast which has been cleared in the recent past for timber harvest. The LD. Hutto Estate represents some of the best developable property surrounding the existing campus. The northern and western portions of the Hutto Estate are generally free of wetlands and contain good soils. The Guess property, however, is heavily encumbered with wetlands. Development in this area should be generally limited to the area south of the power easement.

The forested portions of the Hutto Estate and the Voorhees property to the south and east of the campus consist of mixed hardwood forests with occasional pines. These areas contain two large wooded wetlands and several smaller wooded wetlands. Proposed development in the upland portions of these tracts will significantly impact vegetation, but again, efforts should be made to preserve vegetation where possible. Proposed development in the wetland portions of these properties has generally been avoided.
IV. MANMADE ELEMENTS

The man made elements are divided into the following categories to better understand the relationships between the proposed land uses and the built environment:

1. Administrative and Support
2. Academic
3. Residential
4. Multi-Purpose
5. Transportation and Parking
6. Utilities

The graphic illustration on pages 18 and 19 represents the existing site plan. The graphic illustration on page 20 represents the revised conceptual master plan. The Administrative & Support Building are depicted in red. The Academic Buildings are depicted in orange. The Residential Buildings are depicted in yellow and the Multi-Purpose Buildings are in brown. The buildings included in the TenYear Plan are bolded and shown in blue.

A. PROPOSED CHANGES TO MAN MADE FACILITIES

1. Administration & Support Facilities:
 a. The renovation and new entry addition to Building #23, Thomas N. Road Dining Hall.
 b. New Signage at Hwy 78 and New Gate House with Signage
 c. Facelift to Building #900, Storage Building

2. Academic Facilities: Facelift to Buildings #25, Smith Hall, #28, Science & Engineering Building, #26, Tri-County Building, #200, Continuing Education/Building Technology Center, #300 South Building and Building #27, Industrial Education Center and New Childhood Education Center.

3. Residential Facilities:
 a. New construction of “apartment style” residential units in the southeast quadrant of the campus. These units will provide housing for an additional 350 boarding students.
 b. Facelift to Buildings #500, Dawkins Hall, #600, Martin Luther King, Jr. Hall and #700 Edisto Hall.

4. Multi-Purpose Facilities:
 a. Building 100, W. L. McDuffie Student Services Center - New Entry Renovation.
IV. MANMADE ELEMENTS

5. **Transportation and Parking:**
 a. Provide a new parking lot between the existing Learning Resources Center and the proposed new residential area.

6. **Utilities:**
 a. Provide a new loop in the water distribution system to improve pressure
 b. Provide a future pump station for the sanitary sewer system
 c. Provide a comprehensive storm water management plan

B. **EXISTING ACADEMIC FACILITIES**

 A1 Building 300, South Building – Classroom building and technology lab.
 A2 Building 28, Science and Engineering Building – Classroom Building
 A3 Building 29, Old Learning Resources Center – Library
 A4 Building 30, Academic Support Center - Student services and auditorium.
 A5 Building 25, Smith Hall - Classroom building.
 A6 Building 200, Continuing Education/ Building Technology Center – Classroom building and technology labs.
 A7 Building 400, Automotive Technology Building – Classroom building and technology labs.
 A8 Building 27, Industrial Education Center – Classroom building and technology labs.
 A9 Building 26, Tri-County Building – Classroom building and technology labs.

C. **EXISTING SUPPORT FACILITIES**

 S1 Building 22, Physical Plant
 S2 Building 24, Blatt Hall Administration Building
 S3 Building 100, William L. McDuffie Student Services Center – Student services, gymnasium, offices, etc.
 S4 Building 113, Learning Resources Center – Library and Long Distance Learning.
 S5 Building 23, Rhoad Hall – Cafeteria
D. EXISTING HOUSING FACILITIES

H1 Building 600, Martin Luther King, Jr. Hall - Dormitory
H2 Building 500, Dawkins Hall - Dormitory
H3 Building 700, Edisto Hall - Dormitory
NEW 2020 MASTER PLAN

040 NEW ACADEMIC CLASSROOM BUILDING AND AUDITORIUM WITH EMPHASIS ON HEALTH SERVICE

041 NEW EARLY CHILDHOOD EDUCATION CENTER

720 NEW RESIDENCE HALL

710 NEW OFFICE OF RESIDENTIAL LIFE

800 & 900 FUTURE BUILDING EXPANSION OPPORTUNITY

100A NEW STUDENT UNION FACADE RENOVATION

020 NEW MAIN ENTRANCE GUARD HOUSE & SIGNAGE

023A NEW CAFETERIA FACADE & COURTYARD

0238 NEW ENTRY ROTUNDA & DONOR RECOGNITION WALL
CONCEPTUAL ADDITION TO BUILDING #23 THOMAS N. ROAD DINING HALL
PRIORITY #1: SUMMER 2020
FACE LIFT FOR THE FOLLOWING AREAS/BUILDINGS:
- FRONT ENTRANCE
- CAFETERIA
- GYMNASIUM
- RESIDENCE HALL (3)
- BUILDING 900 ARCHIVES
- GROUNDS & PARKING LOTS

PRIORITY #2: FALL 2020
FACE LIFT FOR THE FOLLOWING AREAS/BUILDINGS:
- BUILDING 25
- BUILDING 28
- BUILDING 26
- BUILDING 200
- BUILDING 300
- PARKING LOT AT BARNWELL CAMPUS

PRIORITY #3: SPRING 2021
FACE LIFT FOR THE FOLLOWING AREAS/BUILDINGS:
- BUILDING 27
- LAND PURCHASE

ACTION PLAN FOR DTC MASTERPLAN 2020
PRIORITY #4: WELCOME CENTER/ GAURD HOUSE/ SIGNAGE
FALL 2021

PRIORITY #5: PHYSICAL PLANT STORAGE BUILDING CONNECTED TO BUILDING #900
SPRING 2022

PRIORITY #6: NEW ACADEMIC CLASSROOM BUILDING & AUDITORIUM WITH EMPHASIS ON HEALTH AND SCIENCE ON UPPER FLOORS (4 FLOORS)
FALL 2025

PRIORITY #7: NEW CHILDHOOD EDUCATION CENTER
FALL 2028
VI. SUMMARY OF PROBABLE CAPITAL IMPROVEMENT COSTS

<table>
<thead>
<tr>
<th>Project Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTRY SIGNAGE FROM HWY 78</td>
<td>$165,000.00</td>
</tr>
<tr>
<td>NEW GATE HOUSE</td>
<td>$225,000.00</td>
</tr>
<tr>
<td>BUILDING #23 THOMAS N. ROAD DINING HALL ADDITION & RENOVATION</td>
<td>$2,866,000.00</td>
</tr>
<tr>
<td>BUILDING #100 WILLIAM L. McDUFFIE STUDENT SERVICES BUILDING ENTRY RENOVATION</td>
<td>$350,000.00</td>
</tr>
</tbody>
</table>

NOTES:
1. THESE ARE PRELIMINARY PRICES. ALL COST REPRESENT 2020 DOLLARS.
2. DESIGN WORK IS REQUIRED TO PROVIDE BUDGET NUMBERS